2020

CHEMISTRY

[HONOURS]

Paper : IV
[SUPPLEMENTARY]

Full Marks: 75

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Marks: $37\frac{1}{2}$)

1. Answer any **three** questions:

 $1 \times 3 = 3$

- a) Show the lewis acidity order of the compound SiX_4 (X=F, Cl, Br).
- b) Give the name and structure of a redox indicator.
- c) What is ambidentate ligand?
- d) Give IUPAC name of the followings:

$$[(NH_3)_4Co \xrightarrow{H_2} Co(NH_3)_4]^{2+}$$

[Turn over]

2. Answer any **three** questions:

- $2 \times 3 = 6$
- a) Establish Nernst equation for the following red-ox couples:
 - i) $Cr_2O_7^{2-}/Cr^{+3}$ in acid medium
 - ii) BrO₃/Br⁻ in alkaline medium.
- Give all geometrical isomers of the complexes given below:
 - i) $\left[\operatorname{Ru} \left(\operatorname{Py} \right)_{3} \operatorname{Cl}_{3} \right]$
 - ii) $\left[\text{Co(en)}_2 \left(\text{NO}_2 \right) \text{Cl} \right]^+$
- c) Using VSEPR theory predict the shape of BrF₄⁻. Indicate the state of hybridisation of the central atom.
- d) Indicate the effects of the following ionisation processes on bond order and bond lengths:
 - i) $O_2 + e \rightarrow O_2^-$
 - ii) $N_2 e \rightarrow N_2^+$
- 3. Answer any **three** questions: $6 \times 3 = 18$
 - a) i) Explain why: N–O bond in NO⁺ is stronger than that in NO molecule.
 - ii) What indicator will you use during the titration of Mohr's salt solution with $K_2Cr_2O_7$ in acid medium? Explain its indicator action.

b) i) Which among the following ligands A, B and C will be able to form innermetallic complex of the first order with an M^{2+ion}?

Justify your answer:

ii) Chloride ion is oxidised to chlorine by permanganate solution only at low pH Give reasons:

$$MnO_4^-/Mn^{+2} = +1.51$$
 and $\frac{1}{2}Cl_2/Cl^- = +1.36V$
3+3

- c) i) The compound [Co(en)₂(NO₂)₂]Cl (en=Ethylene diamine) has been prepared in a number of isomeric forms. One form undergoes no reaction with either AgNO₃ or Ethylene diamine. A second form reacts with AgNO₃ but not with Ethylene diamine. A third form reacts with both AgNO₃ and Ethylene diamine. Identify each of the three forms by their IUPAC names:
 - ii) Give the synthetic schemes for the preparation of all three isomers of {Pt(Py)(NH₃)(Br)(Cl)]

[Given:

- i) The order of trans directing ability: NH₃<Py<Cl⁻<Br⁻
- ii) Pt-N bond strength is greater than Pt-cl bond strength 3+3
- d) i) Are the bond angles LHCH and LFCF in CH₂F molecule equal? Give reasons in support of your answer.
 - ii) On the basis of VSEPR theory write the possible structures of ClF₃ and predict the most favoured structure showing your arguments.

 3+3
- e) i) From the following latimer diagram, calculate the reduction potential of ClO_4 -HClO

$$ClO_{4}^{-} \xrightarrow{+1.20V} ClO_{3}^{-} \xrightarrow{+1.18V} ClO_{2}^{-} \xrightarrow{+1.70V} HClO \xrightarrow{+1.36V} Cl_{2}$$

$$Cl^{-} \xleftarrow{+1.36V}$$

ii) Find out the equivalence point potential during the titration of a $0.1(M)Fe^{+2}$ solution with $0.1(M)Ce^{+4}$ solution.

[3] [Turn over]

Given:
$$E_{Fe^{+3}/Fe^{+2}}^0 = +0.77 \text{ V}$$
 and

$$E_{\text{Ce}^{+4}/\text{Ce}^{+3}}^{0} = +1.57 \,\text{V}$$
 3+3

- Answer any **one** question: $10 \times 1 = 10$
 - Draw the possible isomers of a) $\left[\operatorname{Co}(\operatorname{NH}_3)_2(\operatorname{H}_2\operatorname{O})_2(\operatorname{CN})_2\right]^+$ ion.
 - Mention the conditions for linear ii) combination of atomic orbitals (LCAO), relating to the formation of molecular orbitals.
 - Explain the significance of solubility product principle and common ion effect in the precipitation of iron, aluminium and chromium ions as hydroxides in conventional qualitative analysis.

$$3+3+4=10$$

Predict the shapes and indicate the state b) i) of hybridisation of the central atom for the following:

$$XeF_5^-$$
, SO_2Cl_2 , ClO_3^- , $IO_2F_2^+$

- "The efficiency of complex formation by ii) EDTA increases at higher pH"— Explain.
- Give the IUPAC name of the following complex:

The C-Cl bond distance in CH₃Cl and CF_3C1 are 1.78 $\overset{\circ}{A}$ and 1.75 $\overset{\circ}{A}$, respectively. Comment on this difference with the help of Bent's rule.

 $(1\times4)+2+1+3=10$

(General Proficiency - $\frac{1}{2}$)

GROUP-B

(Marks: $37\frac{1}{2}$)

- Answer any three questions: 5 $1 \times 3 = 3$
 - Give name and chemical composition of an anion exchange resine.
 - Write down the structural formula of oxine and its aluminium complex.
 - Define the term "extraction co-efficiency".
 - Name one important ore of uranium. d)
 - Give the general electronic configuration of lanthanids.
- Calculate the μ_{eff} of E_{μ}^{2+} . Give two facts that 6. a) effect the selectivity of ion exchange resins.

2

130(Sc)

- b) In solvent extraction of uranium with 8 hydronyquinolui in chloroform the volume of aqueons and organic phase was both 25 mg when percentage extraction was 99.8% calculate the distribution ratio.
- c) Give the principle of separation by column chromatography.
- 7. Answer any **three** questions: $6 \times 3 = 18$
 - a) i) Write down the structural formula of oxine and its aluminium complex.
 Discuss the principle of estimation of aluminium in presence of magnesium using oxine as precipitant.
 - ii) Find the μ_{eff} value of Gd³⁺. 4+2=6
 - b) i) Give the general electronic configuration of lanthanides and explain the trends in ionic radii of M^{3+} ions of this class.
 - ii) Mention why the most accessible 4+ ion among the lanthanides is Tb ⁴⁺.

(1+3)+2=6

- c) i) How $Fe(CO)_5$ is prepared? Discuss the metal-carbonyl bonding in $Fe(CO)_5$.
 - ii) What properties made 1, 10phenanthrolene a suitable reagent in inorganic analysis? 2+2+2=6
- d) i) In the complexometric estimation of Ca²⁺ by disodium EDTA using EBT indicator,

- some Na₂MgEDTA is added to the Ca²⁺ solution before starting the titration. Explain its necessity showing all the reactions involved in the process.
- ii) Write the principle of gravimetric estimation of Cu stating the gravimetric factor involved (Atomic weight of Cu=63.5).
- e) i) In solvent extraction process, the extracting solvent is used in a number of parts instead of using the whole liquid in one lot— Explain.
 - ii) What are "stationary phase' and 'mobile phase' in an ion-exchange chromatography?
 - iii) Give a scheme for spectrophotometric estimation of Iron. 2+2+2=6
- 8. Answer any **one** questions: $10 \times 1 = 10$
 - a) i) What happens when Fe(CO)₅ undergoes photolysis?
 - ii) How would you prepare sodium nitroprusside? Give one use of sodium nitro prusside in qualitative analysis.
 - iii) How Ni(CO), can be prepared?

[8]

iv) In a paper chromatographic separation of Hg²⁺, Pb²⁺ and Ag⁺, the solvent front was 21 cm, while fronts due to these metals

were 7,14 and 18.5 cm, respectively. Calculate the R_f values of them.

- b) i) Describe one method of determination of Al³⁺ using an organic precipitant. State the limitations of this method.
 - ii) Explain why: La³⁺, Lu³⁺ are diamagnetic, while Sm³⁺ has low paramagnetism.
 - iii) How can Cu²⁺ and Zn²⁺ in a mixture be estimated complexometrically using EDTA? State the principle involved.

5+2+3

(General proficiency: $\frac{1}{2}$)
